IMT Nord Europe École Mines-Télécom IMT-Université de Lille

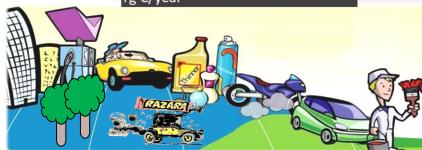
Is traffic still an important source of Volatile Organic Compounds in **European urban areas?**

Background and overview of VOC data in urban areas (RI-URBANS)

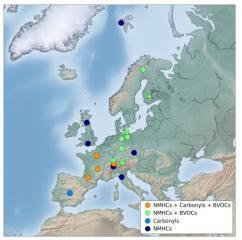
PMF results and impact on ozone and SOA fromation: Marseille – France and Zurich – Switzerland

> Conclusion and perspectives

France contribution to the IMP campaign EMEP/ACTRIS


École Mines-Télécom IMT-Université de Lille

ATMOSPHERIC POLLUTION: A GENERAL SCHEME – ROLE OF VOCS


Dispersion Photochemical processes PAN SOA hv PAN SOA

Protochemical processes PAN SOA HV O₃, NO₃, OH VOC₅ NO₃ O⁴ VOC₅ NO₂ particles Primary emissions of VOCs: Biogenic sources : 1300 Tg C/year Guenther et al. 2002) - Anthropogenic sources: 110 – 150 Tg C/year

VOC monitoring in european urban sites?

VOC monitoring

Sites measuring and reporting EMEP level 2 VOCs for the year 2020 (EMEP report, 2022), Lack of oxy-VOCs and terpenes measurements

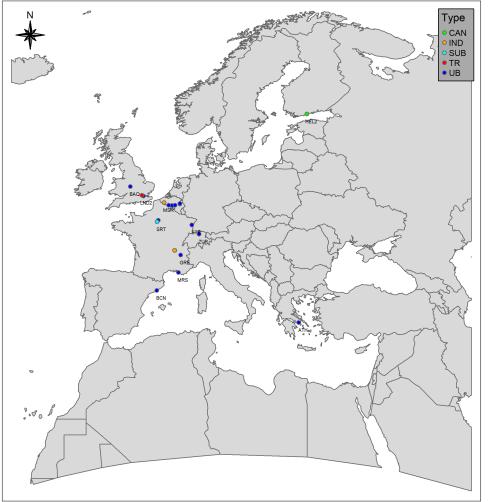
Global & regional VOC observations coordinated within GAW (WMO website) 3

#IMTomorrow

#IMTomorrow

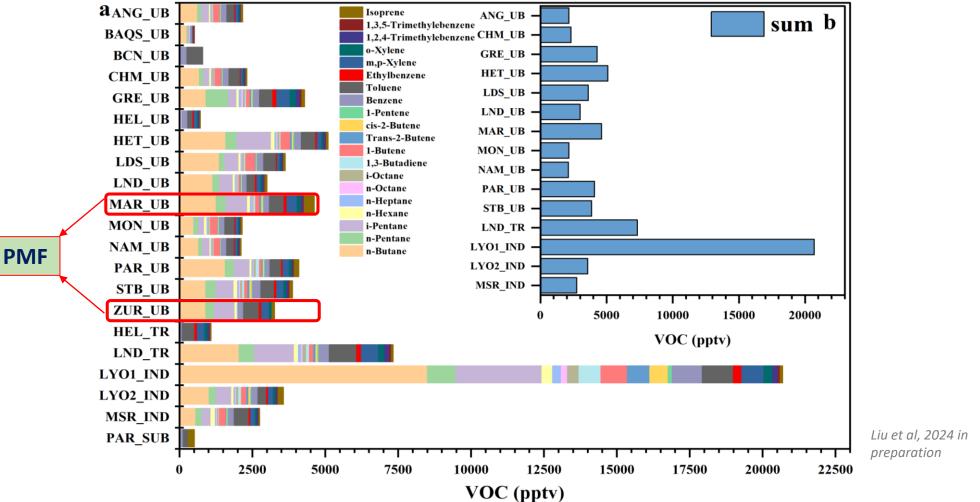
RI-URBANS: Overview of VOCs database available in EBAS

21 European sites of different typology: (15 urban background (UB), 3 industrial (IND), 1 suburban (SUB), 1 traffic related (TR) and 1 street canyon (CAN))


Measurements: 13 sites with VOC online sampling (mainly by TD-GC-FID but also TD-GC-MS, PTR-MS) and 8 sites with VOC offline sampling (mainly with sorbent tubes and canisters)

VOCs reported: NMHCs (common species BTEX), OVOC (4 sites), BVOC (2 sites), halogenated VOCs (few sites); with associated metadata

Time resolution: hourly (online sampling), 24 h 1 day out of 2 (offline sampling)


Age of the datasets: from few years to 20 years Temporal coverage: >75%, except few years for few sites ~50% % of outliers: < 0.5%

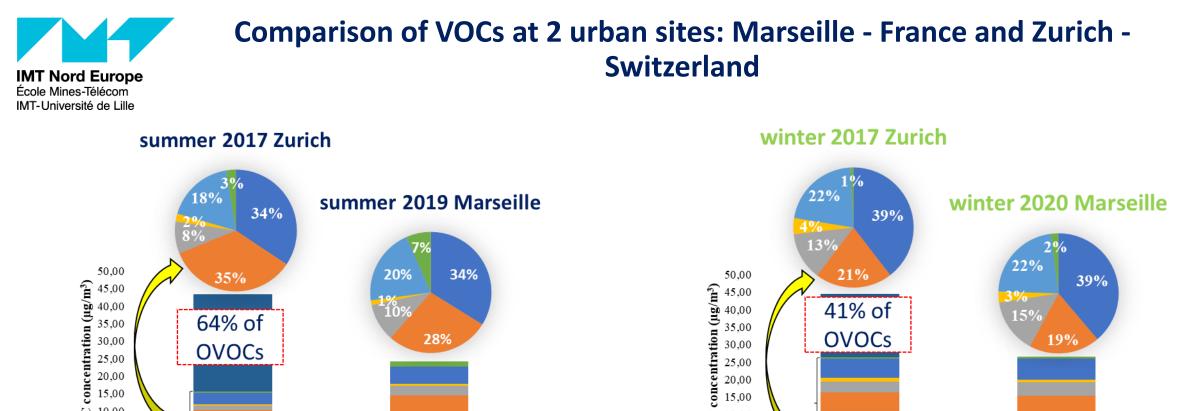
Overview of VOC concentrations at the 21 sites

(a) 21 most often measured VOCs concentrations from the 21 sites and (b) the total VOC concentrations only for sites measuring >16/21 VOCs

5

VOC source apportionment at 2 European sites: Marseille - France and Zurich - Switzerland

Marseille dataset: C2 – C16 NMHC from March 2019 to August 2020



Measures and models ⇒ Complementary approaches

Source oriented models Zurich dataset: C2 – C9 Physico-chemical Meteorology NMHC & C1 - C5 OVOC for processes 2016 & 2017 Emission Concentrations a the receptor site Source profiles **Receptor oriented models**

Comparison on VOC concentrations, seasonal variability, major chemical families, and on potential major sources (SA with EPA PMF 5.0)

#IMTomorrow

39%

5%0-

15%

19%

winter 2020 Marseille

■ isoprene & monoterpenes

alkenes

For the same list of VOCs: very similar profiles of measured NMHC families each season – summer and winter

(^{45,00} ⁶ ^{40,00} ^{35,00}

2 30,00

conce 20,00 15,00

VOC 10,00

35,00

25,00

5,00

0,00

acetylene

alkanes C2-C4

OVOC & halogenated

41% of

OVOCs

winters Zurich

alkanes C5-C7

BTEX

OVOCs: important part of VOCs concentration in urban atmosphere

10%

28%

summers Marseille

■ isoprene & monoterpenes

alkenes

64% of

OVOCs

summers Zurich

alkanes C5-C7

BTEX

VOC

10,00

5.00

0.00

acetylene

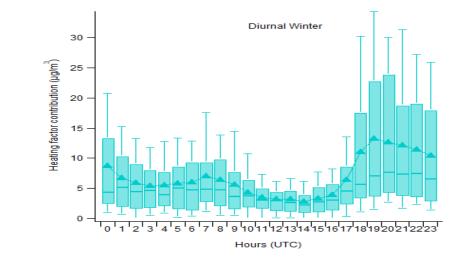
alkanes C2-C4

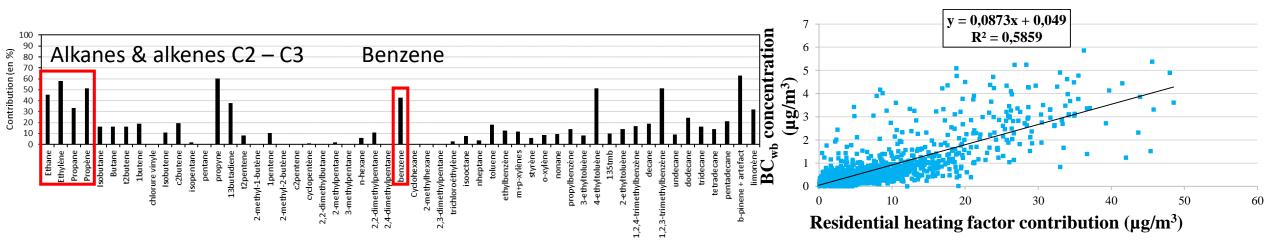
OVOC & halogenated

PMF results: Marseille – France and Zurich – Switzerland

	Zurich	Marseille			
Nb species	Between 26 & 29 (including NMHC & OVOC)	Between 42 & 62 (only NMHC)			
Nb factor	6	8			
r ² model vs measurement	Between 0.87 & 0.99	Between 0.87 & 0.94			
Bootstrap > 0.6?	\checkmark	\checkmark			
Nb species in common	23				
List of potential VOC	sources identified in both cit	ties, over the seasons:			
Zurich		Marseille			
Solvent use Road transport		aust pration from traffic 1 (Plastic production)			

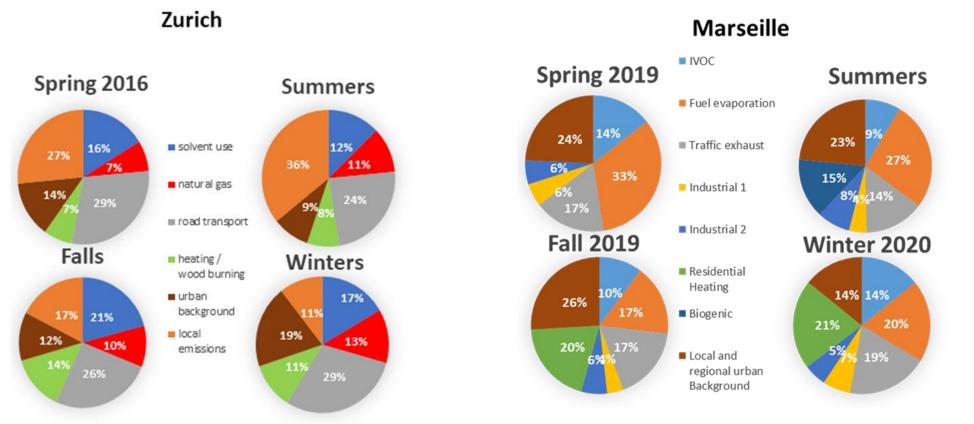
Dufresne et al, 2024 In preparation



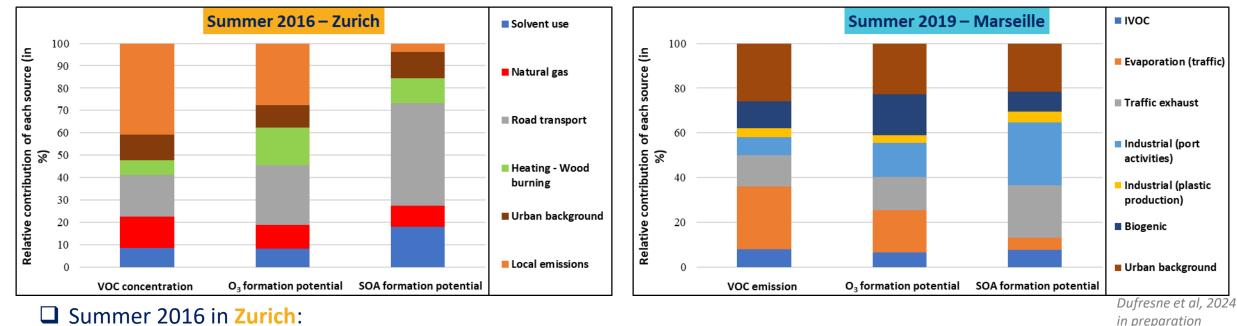

How to attribute a PMF factor to a source profile?

Case of Marseille in winter 2020 – residential heating:

- Knowledge on the VOC fingerprint of the source
- Diurnal profile of factors contribution
- Comparison with ancillary data



PMF results: Marseille – France and Zurich – Switzerland



Solvent use is an important source of VOCs in Zurich (12% – 21%) but was not identified in Marseille Season-dependent sources (biogenic, heating) Industrial impact: Industrial 1 (Plastic production) & Industrial 2 (Port activities)

10

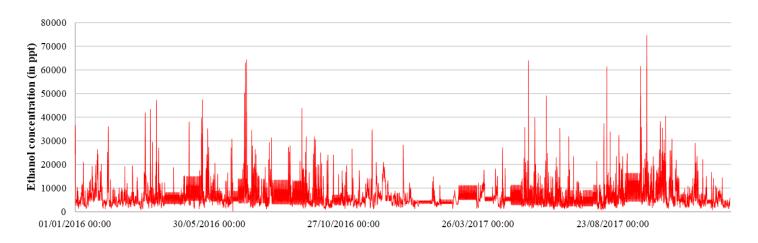
Contribution of sources to ozone and SOA formation potential in Marseille and Zurich

Summer 2016 in Zurich:

- local emissions explain the majority of VOCs measured concentrations and have the highest O₃ formation potential but the lowest SOA formation potential
- Road transport and solvent use have the highest SOA formation potential

□ Summer 2019 in Marseille:

- Port activities explain only 8% of VOCs measured concentrations but have the highest SOA formation potential followed by traffic exhaust
- **Biogenic factor** highly contributes to ozone formation


#IMTomorrow

Conclusion & perspectives

- > 21 Urban and Suburban VOCs datasets added to EBAS
- > Marseille and Zurich show **similar profile** for common VOCs for **all seasons**
- 8 different sources identified in Marseille and 6 in Zurich over the four seasons: traffic (exhaust and fuel evaporation) is still an important source BUT new emerging sources (solvent use) when taking into account additional tracers (OVOC and biogenic)
- > Significant OVOCs contribution in Zurich (41% up to 64%) ; tracers for source identification (solvent use)
- Ethanol concentrations very high (background and variability) in Zurich not considered in PMF analysis: Correlation with road transport factor (ethanol in fuel) & Correlation with solvent use factor; other? (party)

#IMTomorrow

National strategy of VOC (&NOx, & methane) observations Ongoing implementation

Type SUB IND Organization O AASQA **ACTRIS** ♦ MERA

Measurement sites VOC/NOx 2023

- Harmonized implementation of ozone & SOA precursors over France
- > Twin-site : **Regional vs. Urban** contribution
- Source identification and contribution : anthropogenic & biogenic
- Evaluate and improve local emission inventories (=> CTM models)

Contribution to the IMP EMEP/ACTRIS campaign in September

Cross-calibration between participating sites

VOC measured with the implemented TD-GC-FID system for NMHC and OVOC measurement in France

Methanol	Biogenic, solvent use, combustion	Butane	Natural gas, fuel evaporation	Trans-2-butene	Combustion, fuel evaporation	1,3,5- trimethylbenzene	Combustion, fuel evaporation, solvent use
Ethanol	Biofuels	i-pentane	fuel evaporation	Cis-2-butene	Combustion, fuel evaporation	Isoprene	Biogenic mainly, combustion
Formaldehyde	Photochemistry of isoprene	Pentane	fuel evaporation	1-pentene	Combustion, fuel evaporation	P-cymene	Biogenic mainly
Acetaldehyde	Photochemistry, solvent use	i-hexane	fuel evaporation, exhaust emissions	Trans-2-pentene	Combustion, fuel evaporation	Limonene	Biogenic mainly
Methacrolein	Photochemistry of isoprene	Hexane	fuel evaporation, exhaust emissions	Cis-2-pentene	Combustion, fuel evaporation	β-Myrcene	Biogenic mainly
propanone	Biogenic, solvent use,	Heptane	fuel evaporation, exhaust emissions	<u>Benzene</u>	Combustion	α-pinene	Biogenic mainly
MVK	Photochemistry of isoprene	i-octane	fuel evaporation, exhaust emissions	Toluene	Combustion, fuel evaporation, solvent use	β-pinene	Biogenic mainly
MEK	Biogenic	Octane	fuel evaporation, exhaust emissions	Ethylbenzene	Combustion, fuel evaporation, solvent use	Camphene	Biogenic mainly
Ethyne	Combustion	Ethene	Combustion	M,p-xylenes	Combustion, fuel evaporation, solvent use	Δ-Carene	Biogenic mainly
Ethane	Long-lived species, natural gas	Propene	Combustion	O-xylene	Combustion, fuel evaporation, solvent use	1,8-cineole	Biogenic mainly
Propane	Long-lived species, natural gas	1,3-butadiene	Combustion, industrial sources	1,2,4- trimethylbenzene	Combustion, fuel evaporation, solvent use		
i-butane	Natural gas, fuel evaporation	1-butene	Combustion, fuel evaporation	1,2,3- trimethylbenzene	Combustion, fuel evaporation, solvent use		
							14

Thank you for your attention!

Therese.Salameh@imt-nord-europe.fr

